Hall Ticket Number:

Code No.: 21501
VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD
B.E. II Year (I.T.) I - Semester (Main) Examinations, December - 2015
Discrete Mathematics
Time: $\mathbf{3}$ hours
Max. Marks: 70
Note: Answer ALL questions in Part-A and any FIVE questions from Part-B

Part-A (10 X $2=20$ Marks)

1. How many functions can be defined from a set of size m to a set of size n ?
2. List the rules for inverting a function.
3. What is a left Coset of the group?
4. State the Lagrange's theorem in group theory.
5. Define contradiction. Show that $(\mathrm{p} \oplus q) \wedge(\mathrm{p} \leftrightarrow \mathrm{q})$ is a contradiction.
6. Show that complement of the graph K_{n} is null graph.
7. What are the quotients and remainder when 101 is divided by 11 ?
8. Find the product of $a=(110)_{2}$ and $b=(101)_{2}$.
9. State the Pigeanhole Principle.
10. How many binary string are there of length 10 ?

Part-B (5 X 10=50 Marks)

(All bits carry equal marks)
11 a) Let f be the function from $\{a, b, c\}$ to $\{1,2,3\}$ such that $f(a)=2, f(b)=3$, and $f(c)=1$. Is finvertible, and if it is, what is its inverse?
b) What is the symmetric closure of the relation $R=\{(a, b) \mid a>b\}$ on the set of positive integers?

12 a) Let R be the additive group of real numbers and R^{+}be the multiplicative group of positive real numbers. Show that the mapping $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}^{+}$defined by $f(x)=e^{x} \forall x \in$ R is an isomorphism.
b) Show that set of all $\mathrm{n} \times \mathrm{n}$ non-singular matrices forms a non abelian group.

13 a) How can this English sentence be translated into a logical expression? "You cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16 years old."
b) Verify that following graphs are isomorphic.

Contd... 2

14 a) Determine whether 17 are congruent to 5 modulo 6 and whether 24 and 14 are congruent modulo 6.
b) What is the decimal expansion of the number with hexadecimal expansion (2AE0B) 16 ?

15 a) The chairs of an auditorium are to be labelled with an uppercase English letter followed by a positive integer not exceeding 100 . What is the largest number of chairs that can be labelled differently?
b) Solve recurrence relation $a_{n}+a_{n-1}-6 a_{n}-2=0$ for $n \geq 2$ given that $a_{0}=-1 \&$ $a_{1}=8$.

16 a) Out of 30 students in a hostel, 15 study History, 8 study Economics and 6 study Geography. It is known that 3 students study all these subjects. Show that 7 or more students study none of these subjects using principle of inclusion and exclusion.
wit
b) State and prove Burnsides theorem.
17. Write short notes on any two of the following:
a) Show that $(p \wedge q) \rightarrow(p \vee q)$ is a tautology.
b) Find the binary, octal and hexadecimal expansion of (12345) 10 .
c) Six different symbols are transmitted through a communication channel. A total of 12 bfanks are to be inserted between the symbols at least 2 blanks between every pairs of symbols. In how many ways can the symbols and the blanks be arranged?

